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Abstract— A common method for constructing a function
from a finite set of moments is to solve a constrained mini-
mization problem. The idea is to find, among all functions wih
the given moments, that function which minimizes a physicdy
motivated, strictly convex functional. In the kinetic theory of
gases, this functional is the kinetic entropy; the given momnts
are macroscopic densities; and the solution to the constraed
minimization problem is used to formally derive a closed
system of partial differential equations which describe hav the
macroscopic densities evolve in time. Moment equations are
useful because they simplify the kinetic, phase-space deigtion
of a gas, and with entropy-based closures, they retain manyfo
the fundamental properties of kinetic transport.

Unfortunately, in many situations, macroscopic densities
can take on values for which the constrained minimization
problem does not have a solution. In this paper, we give a
geometric description of these so-calledlegenerate densities in
a very general setting. Our key tool is the complementary
slackness condition that is derived from a dual formulation
of a minimization problem with relaxed constraints. We show
that the set of degenerate densities is a union of convex cane
defined by the complementary slackness conditions and, unde
reasonable assumptions, that this set is small in both a topo
logical and a measure-theoretic sense. This result is imptant
for further assessment and implementation of entropy-bass
moment closures. An expanded version of this work can be
found in [Hauck et al., SIAM J. Contr. Optim., Vol. 47, 2008,
pp. 1977-2015].

I. INTRODUCTION

In gas dynamics, the kinetic description of a gas is
often simplified by using moment equations. In this reduceré.]
setting, a gas is characterized by a finite-dimensionalovect
p of densities that are moments of the kinetic distributio
function ' with respect to polynomials of the microscopic

velocity. Evolution equations fop are derived by taking

moments of the Boltzmann equation which governs the
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evolution of F'. The derivation requires that an approximation
for F' be reconstructed from the densitipsgiving what is
called aclosure

One well-known method for prescribing a closure is to
find a function that minimizes the kinetic entropy subject to
the constraint that its moments agree withSuch closures
are calledentropy-based closuretn recent years, they have
generated substantial interest due to important structura
properties which they inherit from the Boltzmann equation.
These properties were first brought to light in [2].

In cases where the moments are continuous with respect to
the relevant topology, there is always an entropy minimizer
[3], [4]. Unfortunately, in classical gas dynamics, this is
not usually the case. As a result, there are often physi-
cally relevant densities for which the constrained entropy
minimization problem does not have a solution. In such
cases, entropy-based closures are not well-defined, asd the
densities are calledegenerateln this paper, we provide a
geometric description for the set of degenerate denstties i
a general setting.

This is a condensed version of work that appears in [1].
The full version contains additional details, exampleg] an
complete proofs.

A. Moment systems and entropy-based closures

Consider a gas that is enclosed in a container, represented

athematically by the se® c R? (typically d = 3). The

inetic distribution functionF’ = F'(v, x,t) which describes

the kinetic state of the gas is a nonnegative function that is

defined for positions: € €, velocitiesv € R?, and times

t > 0 so that, for any measurable sktc Q x R,

/ F(v,x,t) dvdz 1)
A

gives the number of particles at timewith positionsz and

velocities v such that(v,z) € A. The evolution of F' is

governed by the Boltzmann transport equation

OF +v-V,F =C(F), )

where( is an integral operator that describes the collisions
between particles which drive the system to local thermal
equilibrium.
Solutions of (2) formally satisfy the local balance law [5]
OH(F)+ V.- J(F) =S(F), ®3)
where the functionals

H(g) = (glog(g)—g) and J(g) = (v(glog(g)—g)) (4)



are thekinetic entropyandkinetic entropy fluxrespectively, was first presented in its popular form by Planck [9], [10].
and The practical application of entropy as a tool for statatic

S(g) = (log(9)C(9)) (5) inference was championed by Jaynes although, in [11],
. — o . Jaynes himself attributes the original mathematical cptsce
is the kinetic entropy dlSS|pa_t|onHert-_E and throughi)ut this to Gibbs, who generalized Boltzmann'’s entropy formula [12]
paper,(-) denotes Lebesgue Integration overu_akt R?, and . Jaynes also credits Shannon [13] for illuminating the @ntr
we assume that all such integrals are WeII-d_eflned.A_ccgrdw}Ole that entropy plays in the theory of information. The
to Boltzma_mn’s “H-theorem”_[S]S(g) S.O’ W'.th equahty i relationship between statistics and information theorns wa
and only if C(g) = 0. In .t_h|s: case€y 1S said to be in a further pursued by Kullback [14]. Many of the first rigorous
state of !ocal _the_rma_ll equilibrium, and it takes the form of Fesults concerning entropy minimization can be found in the
Maxwellian distribution work of Csiszar [15] and references therein.

p v —ul® ©) Closures which are based on the entropy minimization

(270) 72 €xp 20 ’ principle use the ansatz

wherep andd are positive scalars ande R%. In this way, Flp] = arg min {}(g) : (mg) = p} (13)
‘H acts as a Lyapunov functional for (2). 9t
In order to reduce computational cost, the kinetic descrigt eachz andt to formally close (8). Here
tion of a gas provided by is often simplified by retaining
only a finite number of its velocity averages, moments ~ Fm = {g € L'(R?) : g 2 0 and|mg| € L' (R")}, (14)

Equations which govern the evolution of these moments are dl-lis the standard Euclid Th atoii i
derived by integrating (2) with respect to a vector and|-| is the standard Euclidean norm. The veatsiis no

arbitrary; it must form a basis for an admissible polynomial
m = (mo,...,mu_1)" (7) spaceM that satisfies certain physically motivated properties

Mpuev) =

If the minimizer in (13) exists, it is unique and the closure
is well-defined. In such cases, (11) is a hyperbolic system of

whose components are (typically) homogeneous ponnomiJFs]
in v. These equations take the form

Oip+ V- (vmF) = (mC(F)), (8) PDEs whose solutions satisfy the local dissipation law

where the moments Och(p)+ V- j(p) = s(p), (15)
p=p(z,t) = (mF) (9) where

are thespatial densitiesassociated withF'. h(p) = H(F[p]) (16)

In general, (8) is not a closed system because there is ) )
no way to express the flux term&mF) and collision IS @ strictly convex function op and where
terms (mC(F)) in terms of p. Furthermore, in a moment o B
description, an exact expression fBris not available. An ip) =T (Flpl),  slp) =S(Flp]) <0. 17)

alternative is to approximatg by an ansatz of the form Although any choice for the ansat®[p] will yield a

Flp] = F(v, p(x,1)). (10) system of the form (11), it is the entropy ansatz that

o ] ] gives (15). This dissipation law implies the existence of a
By substitutingF for F' in (8), the evolution ofp can be well-posed linearZ? (Hilbert space) theory for (11) [16].

approximated by the closed system of balance laws Furthermoref, acts as a Lyapunov function for (11). To see
dip + Vs - £(p) = c(p), (11) t_h|s,_note that (15), is simply (3) evaluatgdlat: .f[p]; and
o _ like in Boltzmann’s H-theorems(p) vanishes if and only
where the flux ternf and collision termc are given by if C(F[p]) = 0, in which caseF|p] takes the form of a

- B Maxwellian distribution [2].

£(p) = (vmZlp]) and  c(p) = (mC(Flp]))- (12) The entropy minimization procedure yields an entire hier-

One way to specifyF is to invoke the principle of entropy archy of systems with the aforementioned properties whose
minimization (or maximizationin the physics community, members are generated by appending an initial choice of
where the term “entropy” refers to’H and has been widely m with additional polynomial components. For this reason,
used for over a century). The probabilistic interpretatidn entropy-based closures have been applied to other areas of
entropy dates back to Boltzmann [6], [7], who argued thatinetic theory such as radiation transport [17], [18] and
the entropy of a system of identical particles depends on tldbharge transport in semiconductors [19]-[21]. (Additiona
number of microstates (particle arrangements in phase}ypaceferences for charge transport can be found in [19].) In the
that are consistent with the macroscopic state of the systemase of gas dynamics, the moment hierarchy begins with
This dependence is expressed by the famous logarithntfee canonical choicen = (1,v1,...,vq, 3/v|*)T. For this
relationship known a8oltzmann’s entropy formul8] (and choice,F|p] is always a Maxwellian, and the entropy-based
also as Boltzmann’s equation, although distinct from (2)J a closure generates Euler’s equations for a compressible gas



B. Realizability and degenerate densities choices ofm. However, a description of the geometry of

The formal structure of entropy-based closures hinges dfm. 8S given in_[22]_, is still Iacking for the general setting.
the assumption that for each in the class ofrealizable In [23], Schneider introduces a different extension/iday
densities relaxing the constraints in (13). In order to state this feob

precisely, we decomposa into subvectors:

R ={p€R":p=(mg) g €Fn},  (18) m = (m].m!,mJ,....m})", (20)

there is a minimizer for (13). However, for most choicesyhere then,; components oin; are the homogeneougth
of m, there exist realizable values @f for which such a degree polynomial components nf. Thus any polynomial
minimizer does not exist. For these densities, which we term ¢ M can be expressed as the sum of its homogeneous
degeneratgthe entropy-based closure is not well-defined andomponents:
modifications must be made to the entropy-based procedure. N
There are essentially two approaches: p=a’m= Z %ngw (21)
1) Show that the set of nondegenerate densities is invari- =1
ant under the dynamics of the balance law (11) with th@/here € R™ is a vector of constant coefficients that
entropy-based closure (as discussed in [22]) or impo§ecomposes into subvectors
such a condmo_n in a way that is physically reasonable o — (%T’ aT,al, "ali\“])T' (22)
and mathematically justifiable. ] ) ) )
2) Develop a modified closure that (i) is well-posed for_\Nlth the preceding notation, the relaxed constraint pnoble
all physically realizable values qf, (ii) recovers the S
entropy-based closure whenever the minimizer in (13) hs(p) = Jnin {H(g) : (mg) =° p}, (23)
;ahmsts_, a_nd (iii) generates syster_ns of hyperbolic PDEV?Ihere the relatiortmg) <° p means that
at dissipate a physically meaningful, convex entropy.
This was attempted in [23]. (mjg) =p;, 0<j<N-1, (24)
For either approach, it is important to show that the sefnd
D of degenerate densities is small in some sense, thereby
minimizing the class of physically realizable spatial dées ay(myg) < aypy whenever ajymy >0.  (25)
which require special treatment. In the first approach, this The benefit of using the relaxed constraint set in (23) is
means limiting the number of initial conditions which mustthat it is closed in the weak- (R?) topology, and as a result,
be discarded; in the second, it means limiting the number ¢fie minimizer in (23) always exists. While a minimizing
densities inR,, which require a modified closure. sequence fofH in the constraint set for (13) does converge
Another reason to studyD,, is that the equilibrium weakly in L!(R9), the constraint set is not closed with
densities, which are moments of a Maxwellian distributiomespect to this topology. Thus the infimum might not be
(6), lie on its boundary [2], [4], [22], [23]. Because theattained.
kine_t?c Qntropy_drive_s soluti_ons of (3) to_vvard local thgrmaD' Overview of Main Results
equilibrium, trajectories defined by solutions to (15) wét
times, come very close t®,,. Thus it is very important to
have a detailed understanding of its geometry.

Our main contribution is a geometrical description of the
setDy, in a general setting, based on a dual formulation of
(23). Our results, which recover and extend many previous
C. Previous work results from [4], [22], [23] are summarized in the following

theorems.

o In Theorem 4, we prove strong duality for both the
equality constraint problem (19) and the relaxed con-
straint problem (23). We conclude thag = hj, even
when the infimum in (23) is not attained. We also prove
a complementary slackness conditifor (23) which
serves as the basis of our geometrical description.

e In Theorem 7, we show that the s&, iS a union
of convex cones that are defined by complementary

hy(p) = inf {H(g): (mg) = p}. (19) slackness condition from Theorem 4.
9EFm o In Theorem 9, we show that, under reasonable assump-
Later, in [4], Junk considers a more general case in tions, the setDy, is a nowhere dense subset By,

Previous studies of the sdéb,, can be found in [4],
[22], [23]. In [22], Junk provides a geometric description
for Dy, in a one-dimensional settingl (= 1) with m =
(1,v,0% 03, 01T, In turns out in this case thaP,, is a
codimension one manifold. This result was discovered, in
part, by extending the definition afgiven by (17) to include
cases where the minimizer in (13) does not exist. This is done
by replacing the minimum in (13) with an infimum, viz.,

which m consists of a radial componeht|", for some that has Lebesgue measure zero and is restricted to
even integerN > 2, plus polynomial components of lower the boundary of the nondegenerate, realizable densities.
degree. For such cases, he provides an integrability dondit The assumptions we employ hold in all known cases.
to determine whetheD,, is nonempty. In practice, this Whether they hold in general is (to our knowledge) an

condition is easily checked and extensible to more general OPen question in analysis and algebraic geometry.



II. ENTROPY MINIMIZATION WITH RELAXED A. The dual function

CONSTRAINTS The Lagrangian functioff : Fp,, x R” X Ry, — RU {00}

The main result from [23] for the relaxed constraintassociated to (23) is
problem is the following.

— T
Theorem 1 (Schneider [23])For anyp € R, there is a L(g,e,p) =H(9) + " (p — (myg)) (34)
unique minimizer for (23) of the fornd:,,, where and the dual function) : R" x Ry — R U {—o0} is
Go = exp(a’m) (26) Y(a, p) = i%f L(g, o, p) . (35)
g€lm
and
" Theorem 3:For all « € A, and p € R, the dual
a€An={acR": Gy €Fp}. 27)  function P
Conversely,

w(avp) =L (Gaaaap) = an - <Ga> (36)

B. Duality theorems

= min {H(g) : (mg) = (mGa)}, (28) The following strong duality theorem is an application of
g€Fm .
a general result from [24, Exercise 8.7] and can be proven

for eacha € Ap,. following the arguments found in [24, Chapter 8].

Theorem 4:Let p € Ry, and lethy, hs, andy be given

We definea : Ry, — Am as the mapping which assigns toby (19), (23), and (35), respectively. Then

p € R the vectora € Ay, such that,, solves (23)—that
is, hi(p) = hs(p) = max (e, p), 37)

Ga(p) = arg min {H(g) : (mg) <°* p}.  (29)

H(Ga) = gI?]iF?n {H(g) : (mg) =° (mGa)}

where the maximum on the right is attained by a unique

We definer : A, — R" as the mapping which generatesd € Am. Furthermore(G4 anda satisfy the complementary

the moments ot slackness condition

AT AT .
r(a) = (mGy). (30) &’ p=a (mGa), (38)
The image of A, underr is the set ofexponentially znngA minimizes £ (g, &, p) over Fm, i.e., ¥(a, p) =
realizable densities (Ga @ p).
RoP =r(Am) C Rm - (31) In light of (37), the definition ofh given in (16), which
) applies only top € R&XP, can be extended to all 62,,, by
The following theorem relates and a. setting
Theorem 2:The mappingr is one-to-one fromA,, onto hip) = 39
ReXP with inversea. It is a diffeomorphism betweeimt A, (p) = € i vl p). (39)

andint REXP.

Proof: We first identify a as the inverse of. Since
r is onto REXP, we need only to show thai(r(a)) = «
for eacha € Ay,. According to Theorem 1 and the implicit
definition of a in (29)

Theorem 4 is used to prove the following result.

Theorem 5:Given p € Ry, the minimization problem
with equality constraints (13) has a minimizer if and only if
p € R&P. In other words,

) . Dm = Rm\RuP. (40)
H(Ga) = aehe {H(9) : (mg) =° r(a)} = H(Ga(r(a)) Proof: The converse statement of Theorem 1 implies
‘ (32) the “if” statement of Theorem 5. To prove the “only if”
and, since the minimizer is unique, it follows their(a)) =  statement, lefp € R, be such that (13) has a minimizer.
a. Onint Ay, r is smooth with Jacobian According to (37), this minimizer is also the minimizer of
or 92h . (23) an_d is ther_e_fore _given bg_?a(p). Hence, the equality
o () = W(a,p) = (mm" Gy) (33) constraint conditions in (13) imply thgd = (mGy(),
which meansp € REP. [ |

that is a positive-definite matrix. The inverse function-the The essential point of Theorem 5 is that wh®n, is

orem implies then that is a diffeomorphism fronint 4w nonempty, there are realizable densitiesthat cannot be

onto int RLP. B realized by a functions of the form¥,. In other words,

p ¢ REP even thougha(p) € Am. It is this idea which

lays the foundation for the results in [4], [22] and for
BecauseH is convex onF,, and the constraints in (23) the new results of this paper. However, we still need the

are linear, a dual treatment to the relaxed-constraintlprop complementary slackness condition in order to find a useful

e.g., [24]-[26] is appropriate. geometric description foDy,.

IIl. DUAL FORMULATION



IV. GEOMETRY OFD,, Theorem 7:The setR,, can be expressed as the following
The complementary slackness condition (38) which relatégion of cones:

ay and py is the key to characterizin@,,. Indeed, this R = U {p+y NC(Amy,an(p))} , (46)
condition is used to define the convex cones from wiigh PERSP
is composed.

where the relation+,’ is defined in (45).

A. Motivation: Behavior of the closure near degeneracy For p € int RSP, N'C(Amy, an(p)) is just the origin in
m my ) AN

Even thoughD,, is usually nonempty, there is evidencegnx  |n such cases, Theorem 7 is trivial, and the construction
to suggest that ifp € R,;" initially, then densities iMDm 5+ AC(Am,.an(p)) does not generate any new densi-

might never be attained during the evolution of the momenfes. ThereforeD,,, is constructed entirely by normal cones
system (8). To investigate this possibility, we introdube t attached tgp € REP N IREP.

function x : Rm — R, defined by Corollary 8: The degenerate densities are given by
0= [ m@) G @) Pa= U e AGUmax(e)) (@)
et PERMPNOREY
For the entropy-based closurejs closely related to the flux — U {r(&) +, NCo(Amn,an)}, (48)
f in (12), and we show below that becomes unbounded sed oA N "

asp approache®,,. As pointed out in [22], such divergent Ny — _
behavior raises the possibility th&:XP is invariant under whereNCo(Amy, an (p)) = NC(Amy, an (p)\{0}-

the dynamics of the closure. C. Smoothness assumptions.dp, N 0Am,

Proposition 6: Let {p;) }32; be a sequence iR;;P such Corollary 8 gives the degenerate densities associated with
that p;;y — p. € Dm, and for eachy, let x; = x(p(;)). eachp € REPNIREP. However, a clean description 6%,
Then{x;}72, is unbounded. requires also thaR$P N OREP itself have a nice structure.

Suppose now that it can be proven tHLP is invariant In particular, we would like to say thaRS&XP N OREP is
under the dynamics of the balance law (11) with the entropy finite union of disjoint manifolds. At this point we are
based closure. Then ip € REP initially, the entropy unable to prove such a result in general, in part due to
minimization problem with equality constraints (13) will the complicated structure ofl,, N 0A,, (the preimage of
always have a solution, and the formal properties of th®er N 9RSP with respect tor). We therefore make two
closure will be maintained. However, it must be shown—assumptions: first, thatl,, N 0.A, is a union of disjoint
at a minimum—thatD,,, is small in some sense, therebymanifolds with dimensional restrictions that are related t
limiting the number of initial conditions iR, which must the dimensions of the normal cones in (48) in such a way
be discarded in order to maintain a well-defined closure. las to ensure thaD,, is a lower-dimensional subset of
the following subsections, we show that, under reasonabfe,,; and second, that the mappings diffeomorphic when
hypothesesD,, is indeed a Lebesgue measure zero set. restricted to each of these manifolds. Thus each dimerision
B. The complementary slackness condition and normg?an!fmd n Afx‘ 3 8A"e,xW|II be mappgd toa dlmenspla
cones mann‘o!d iNREXP N OREP, Befpre_statlng our assumptions,
we define the orthogonal projectiofsy : R™ — R™ and

Becausep; = (m;Gg) for j < N, the only nontrivial Py : R" = RN by
part of the complementary slackness condition (38) is

Pn(a) = (0,...,0,0,a3)", (49)
ahpy = an(myGa) (42) T T T T
NPN = ONBNGA)- Pyla) = a—Py(a) = (af ,af,...,ak_,,0)". (50)
This condition and the inequality constraint (25) from the Assumptionl. The setAm N 94, can be decomposed
primal problem imply that into a finite collectionS of disjoint, smooth () manifolds

(43) in R™. Furthermore, ifS is one such manifold, thefy

projectsS onto a manifoldSy C dAm, with codimension
for all  in the cone at least one irR"~ andP projectsS onto a manifoldS g

n of codimension at least one R™~"~ .
Amy ={ay € R"™ : ajymy <0} (44) Assumptionll. If Assumption | holds and ifS is an

Thus py is contained iNNVC(Am, , & ): the normal cone element of the stratification ofl,, N 0 An,, then for each
[26] of A, with respect toay and with vertexXmyGg). P € Rm, the restriction ofr to S is infinitely Fréchet
The converse statement is also true: Givere A,,, every differentiable.
elementp,, of the normal conémyGy) + NC(Amy, anN) When both Assumptions | and Il hold,is a smooth dif-
is the N-th subvector of a density iR,. To state this more feomorphism with inversa when restricted to any manifold

precisely, letay (p) be the N-th subvector ofa(p), and for in the stratification of4,, N 0.An. It should be noted that
anyy € R" andz € RY, let Assumptions | and Il are known to hold for the examples

considered in [4], [22], [23]. Whether or not they hold in
Yt 2= (W0 Yl Yn—1 YN T 2n) T (45) general is, to our knowledge, an open question.

(an — éan)" (py — (myGa)) <0



D. Smallness oD, degenerate densities themselves, one must determined the
If Assumptions | and Il hold, we can show tha, is difficulties are by-products of the closure or related in som

small in the following sense way to the dynamics of the Boltzmann equation.

Theorem 9:Suppose that Assumptions | and Il hold. Then REFERENCES
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